Can we improve descriptions of nuclear effects in neutrino interactions using electron-scattering data?

Artur M. Ankowski Center for Neutrino Physics, Virginia Tech

> Fermilab Neutrino Seminar May 11, 2017

Outline

1) Introduction

- Why do we need to model nuclear effects accurately?
- What can we learn from electron scattering?

2) Spectral function approach

- Short-range correlations
- Are final-state interactions relevant?

3) Measurement of the spectral function of 40Ar

- Physics motivation
- Coincidence electron scattering and the spectral function

4) Summary

Energy reconstruction

Kinematic reconstruction

In quasielastic scattering off **free nucleons**, $v + p \rightarrow l + n$ and $v + n \rightarrow l + p$, we can deduce the neutrino energy from the charged lepton's kinematics.

No need to reconstruct the nucleon kinematics.

E' and θ known

$$E = \frac{ME' + \text{const}}{M - E' + |\mathbf{k}'| \cos \theta}$$

Kinematic reconstruction

In nuclei the reconstruction becomes an approximation due to the binding energy, Fermi motion, final-state interactions, two-body interactions etc.

E' and θ known

$$E \simeq \frac{(M - \epsilon)E' + \text{const}}{M - \epsilon - E' + |\mathbf{k}'| \cos \theta}$$

Free-proton events

For targets containing H, the (ν and ν) pion-production events on free protons could be separated out, based on the balance of the transverse momentum.

Lu et al., PRD 92, 051302 (2015)

Consider the simplest (unrealistic) case:

the beam is monochromatic but its energy is unknown and has to be reconstructed

E' and θ known

$$E=?$$

$$E' = 768 \text{ MeV}$$

 $\theta = 37.5 \text{ deg}$
 $\Delta E' = 5 \text{ MeV}$

$$E' = 768 \text{ MeV}$$

 $\theta = 37.5 \text{ deg}$
 $\Delta E' = 5 \text{ MeV}$

for
$$\epsilon = 25$$
 MeV
 $E = 960$ MeV
 $\Delta E = 7$ MeV

$$E' = 768 \text{ MeV}$$

 $\theta = 37.5 \text{ deg}$
 $\Delta E' = 5 \text{ MeV}$

for
$$\epsilon = 25$$
 MeV
 $E = 960$ MeV
 $\Delta E = 7$ MeV

 $true\ value$ $E = 961\ MeV$

θ (deg)	37.5	37.5	37.1	36.0	36.0
E' (MeV)	976	768	615	487.5	287.5
$\Delta E'$ (MeV)	5	5	5	5	2.5

Assuming $\epsilon = 25 \text{ MeV}$

rec. E	1285 ± 8	960 ± 7	741 ± 7	571 ± 6	333 ± 3
true E	1299	961	730	560	320

θ (deg)	37.5	37.5	37.1	36.0	36.0
E'(MeV)	976	768	615	487.5	287.5
$\Delta E'$ (MeV)	5	5	5	5	2.5

Appropriate ϵ value?

true E	1299	961	730	560	320
ϵ	33 ± 5	26 ± 5	16 ± 5	16 ± 3	13 ± 3

Sealock et al., PRL 62, 1350 (1989) O'Connell *et al.*, PRC 35, 1063 (1987) Barreau *et al.*, NPA 402, 515 (1983)

θ (deg)	37.5	37.5	37.1	36.0	36.0
E'(MeV)	976	768	615	487.5	287.5
$\Delta E'$ (MeV)	5	5	5	5	2.5

Appropriate ϵ value?

true E	1299	961	730	560	320
ϵ	33 ± 5	26 ± 5	16 ± 5	16 ± 3	13 ± 3

different
$$E \equiv \text{different } Q^2 \equiv \text{different } \theta$$

$$\rightarrow \text{different } \epsilon$$

Realistic calculations vs $\boldsymbol{E}_{\mathrm{rec}}$

Realistic calculations vs E_{rec}

Same physics drives the QE peak position and relates the kinematics to neutrino energy

Polychromatic beam

In modern experiments, the neutrino beams are not monochromatic, and the **energy must be reconstructed** from the observables, typically E' and $\cos \theta$ under the CCQE event hypothesis.

E' and θ known

$$E = ?$$

CCQE events

In practice, CCQE event candidates are defined as containing no pions observed.

- CCQE (any number of nucleons)
- + pion production and followed by absorption undetected pions
- CCQE with pions from FSI

 0π events

Recall the monochromatic-beam case

CCQE events of given *l*[±] kinematics

Calorimetric energy reconstruction

- Advantage: applicable to any final states
- Insensitive to nuclear effects when

missing energy « neutrino energy

A.M.A., arXiv: 1704.07835

Otherwise, requires input from nuclear models

What precision are we reaching?

J. Hignight (IceCube), APS April Meeting, 2017

What precision are we reaching?

At the T2K kinematics (~600 MeV),

- 10% uncertainty (current T2K), ~60 MeV
- 2% uncertainty (current global fits), ~10 MeV

At the NOvA and DUNE kinematics, values x4-5.

Effects considered to be "small" need to be accounted for accurately to avoid biases.

Assumption: the dominant process of lepton-nucleus interaction is scattering off a single nucleon, with the remaining nucleons acting as a spectator system.

Assumption: the dominant process of lepton-nucleus interaction is scattering off a single nucleon, with the remaining nucleons acting as a spectator system.

It is valid when the momentum transfer $|\mathbf{q}|$ is high enough, as the probe's spatial resolution is $\sim 1/|\mathbf{q}|$.

$$\frac{d\sigma_{\ell A}^{\text{IA}}}{d\omega d\Omega} = \sum_{N} \int d^{3}p \, dE \, P_{\text{hole}}^{N}(\mathbf{p}, E) \, \frac{M}{E_{\mathbf{p}}} \frac{d\sigma_{\ell N}^{\text{elem}}}{d\omega d\Omega} \, \underline{P_{\text{part}}^{N}(\mathbf{p}', \mathcal{T}')}$$

Spectral function

 $\sim \delta(...)$ x Pauli blocking

Elementary cross section

$$\frac{d\sigma_{\ell A}^{\text{IA}}}{d\omega d\Omega} = \sum_{N} \int d^{3}p \, dE \, P_{\text{hole}}^{N}(\mathbf{p}, E) \, \frac{M}{E_{\mathbf{p}}} \frac{d\sigma_{\ell N}^{\text{elem}}}{d\omega d\Omega} \, P_{\text{part}}^{N}(\mathbf{p}', \mathcal{T}')$$

The (hole) spectral function describes the ground-state properties of the target nucleus.

$$\frac{d\sigma_{\ell A}^{\text{IA}}}{d\omega d\Omega} = \sum_{N} \int d^{3}p \, dE \, P_{\text{hole}}^{N}(\mathbf{p}, E) \, \frac{M}{E_{\mathbf{p}}} \frac{d\sigma_{\ell N}^{\text{elem}}}{d\omega d\Omega} \, P_{\text{part}}^{N}(\mathbf{p}', \mathcal{T}')$$

The elementary cross section characterizes the vertex

$$\frac{d\sigma_{\ell A}^{\text{IA}}}{d\omega d\Omega} = \sum_{N} \int d^{3}p \, dE \, P_{\text{hole}}^{N}(\mathbf{p}, E) \, \frac{M}{E_{\mathbf{p}}} \frac{d\sigma_{\ell N}^{\text{elem}}}{d\omega d\Omega} \, \underline{P_{\text{part}}^{N}(\mathbf{p}', \mathcal{T}')}$$

Ensures the energy conservation and Pauli blocking

$$\frac{d\sigma_{\ell A}^{\text{IA}}}{d\omega d\Omega} = \sum_{N} \int d^{3}p \, dE \, P_{\text{hole}}^{N}(\mathbf{p}, E) \, \frac{M}{E_{\mathbf{p}}} \frac{d\sigma_{\ell N}^{\text{elem}}}{d\omega d\Omega} \, \underline{P_{\text{part}}^{N}(\mathbf{p}', \mathcal{T}')}$$

Spectral function

 $\sim \delta(...)$ x Pauli blocking

Elementary cross section

For scattering in a given angle, neutrinos and electrons differ only due to the elementary cross section.

In neutrino scattering, uncertainties come from (i) interaction dynamics and (ii) nuclear effects.

It is **highly improbable** that theoretical approaches unable to reproduce (e,e') data would describe nuclear effects in neutrino interactions at similar kinematics.

Much more than the vector part...

Can we trust our models and MCs?

Can we trust our models and MCs?

"Trusting Too Much Kills You" by Bryan Teves

and lacking precision

Side remark: relativistic kinematics

A.M.A. & O. Benhar, PRC 83, 054616 (2011)

Sizable differences between the **relativistic** and **nonrelativistic** results at neutrino energies ~500 MeV.

Side remark: relativistic kinematics

A.M.A. & O. Benhar, PRC 83, 054616 (2011)

At |q|~540 MeV, semi-relativistic result is 5% lower than the exact cross section.

Fermi gas model

In an infinite infinite space filled uniformly with nucleons, the eigenstates can be labeled using the momentum.

Electron scattering off carbon, 500 MeV, 60 deg

Moniz et al., PRL 26, 445 (1971)

Electron scattering off carbon, 500 MeV, 60 deg

Moniz et al., PRL 26, 445 (1971)

Fermi gas model

Fermi gas model

What happens at kinematics other than 500 MeV, 60 deg?

Barreau et al., NPA 402, 515 (1983)

Shell model

In a spherically symmetric potential, the eigenstates can be labeled using the total angular momentum.

Example: oxygen nucleus

Leuschner et al., PRC 49, 955 (1994)

Example: oxygen spectral function

Depletion of the shell-model states

Depletion of the shell-model states

The observed depletion is ~35% for the valence shells (LRC and SRC) and ~20% when higher missing energy

is probed (SRC).

Spectral function approach

The main source of the depletion of the shell-model states at high E are short-range nucleon-nucleon correlations.

Yielding NN pairs (typically pn pairs) with high relative momentum, they move ~20% of nucleons to the states of high removal energies.

The hole spectral function can be expressed as

$$P_N(\mathbf{p}, E) = \sum_{\alpha} n_{\alpha} |\phi_{\alpha}|^2 f_{\alpha}(E - E_{\alpha}^N) + P_{\text{corr}}^N(\mathbf{p}, E),$$

describes the contribution of the shell-model states, vanishes at high |p| or high *E*

relevant only at high |p| and E

SRC don't depend on the shell structure or finite-size effects, only on the density

Local-density approximation

The correlation component in nuclei can be obtained combining the results for infinite nuclear matter obtained at different densities:

$$P_{\text{corr}}^{N}(\mathbf{p}, E) = \int dR \rho(R) P_{\text{corr}}^{NM,N}(\rho, \mathbf{p}, E).$$

Benhar et al., NPA 579 493, (1994)

Comparison to C(e, e') data

$$E_{\mathbf{k}} + M_A = E_{\mathbf{k}'} + E_{A-1} + E_{\mathbf{p}'}$$

$$E_{\mathbf{k}} + M_A = E_{\mathbf{k}'} + E_{A-1} + E_{\mathbf{p}'}$$

$$E_{\mathbf{k}} + M_A = E_{\mathbf{k}'} + E_{A-1} + E_{\mathbf{p}'}$$

$$E_{\mathbf{k}} + M_A = E_{\mathbf{k}'} + E_{A-1} + E_{\mathbf{p}'}$$

$$E_{\mathbf{k}} + M_A = E_{\mathbf{k}'} + E_{A-1} + E_{\mathbf{p}'}$$

Final-state interactions

Their effect on the cross section is easy to understand in terms of the complex optical potential:

- the real part modifies the struck nucleon's energy spectrum: it differes from $\sqrt{M^2 + p'^2}$
- the imaginary part reduces the single-nucleon final states and produces multinucleon final states

$$e^{i(E+U)t} = e^{i(E+U_V)t}e^{-U_W t}$$

Horikawa et al., PRC 22, 1680 (1980)

Final-state interactions

In the convolution approach,

$$\frac{d\sigma^{\text{FSI}}}{d\omega d\Omega} = \int d\omega' f_{\mathbf{q}}(\omega - \omega') \frac{d\sigma^{\text{IA}}}{d\omega' d\Omega},$$

with the folding function

$$f_{\mathbf{q}}(\omega) = \delta(\omega)\sqrt{T_A} + \left(1-\sqrt{T_A}\right)F_{\mathbf{q}}(\omega),$$
 Nucl. transparency

Nuclear transparency

Real part of the optical potential

We account for the spectrum modification by

$$f_{\mathbf{q}}(\omega - \omega') \to f_{\mathbf{q}}(\omega - \omega' - U_V).$$

This procedure is similar to that from the Fermi gas model to introduce the binding energy in the argument of $\delta(...)$.

$$U_V = U_V(t_{\rm kin})$$

$$U_V = U_V(t_{\rm kin})$$

$$t_{\rm kin} = \frac{E_{\mathbf{k}}^2(1 - \cos \theta)}{M + E_{\mathbf{k}}(1 - \cos \theta)}$$

Optical potential by Cooper et al.

Optical potential by Cooper et al.

obtained from Cooper *et al.*, PRC 47, 297 (1993)

Simple comparison

Real part of the OP

- acts in the final state
- shifts the QE peak to low ω at low |q|
 (to high ω at high |q|)

Binding energy in RFG

- acts in the initial state
- shifts the QE peak to high ω

Why to focus on quasielastic?

Comparison to C(e, e') data

Comparison to C(e, e') data

Compared calculations

RFG model ε = 25 MeV p_F = 221 MeV

SF calculation without FSI

SF calculation, LDA treatment of Pauli blocking

SF calculation, step function

Compared calculations

Calcs. include QE by 1-body current only

Comparisons to C(e,e') data

Barreau *et al.*, NPA 402, 515 (1983)

Comparisons to C(e,e') data

Barreau *et al.*, NPA 402, 515 (1983)

Comparisons to C(e,e') data

Barreau *et al.*, NPA 402, 515 (1983) Baran *et al.*, PRL 61, 400 (1988)

Whitney *et al.*, PRC 9, 2230 (1974)

Comparisons to C(e,e') data

The supplemental material of PRD 91,033005 (2015) shows comparisons to the data sets collected at 54 kinematical setups

- energies from ~160 MeV to ~4 GeV,
- angles from 12 to 145 degrees,
- at the QE peak, the values of momentum transfer from ~ 145 to ~ 1060 MeV/c and $0.02 \le Q^2 \le 0.86$ (GeV/c)².

CCQE MINERvA data

SF calculations with FSI

VS.

SF calculation without FSI

Fields *et al.*, PRL 111, 022501 (2013)

A. M. A., PRD 92, 013007 (2015)

Fiorentini *et al.*, PRL 111, 022502 (2013)

CCQE MINERvA data

TABLE I. Fit results to the CC QE MINERvA data.									
	antineutrino	neutrino	combined fit						
	including theoretical uncertainties:								
M_A (GeV)	1.16 ± 0.06	1.17 ± 0.06	1.16 ± 0.06						
$\chi^2/\text{d.o.f.}$	0.38	1.33	0.93						
	neglectin	neglecting theoretical uncertainties:							
M_A (GeV)	1.15 ± 0.10	1.15 ± 0.07	1.13 ± 0.06						
$\chi^2/\text{d.o.f.}$	0.44	1.38	1.00						
	neglecting FSI ($M_A = 1.16 \text{ GeV}$):								
$\chi^2/\text{d.o.f.}$	2.49	2.45	2.42						

Measurement of the spectral function of argon in JLab

What do we know about Ar?

What do we know about Ar?

nuclear excitations by up to ~11 MeV
 Cameron & Singh, Nucl. Data Sheets 102, 293 (2004)

angular distributions of ⁴⁰Ar(p, p') for a few excitation lvls.
 Fabrici et al., PRC 21, 830 & 844 (1980); De Leo et al.,
 PRC 31, 362 (1985); Blanpied et al., PRC 37, 1304 (1988)

angular distributions of ⁴⁰Ar(*p*, *d*)³⁹Ar
 Tonn *et al.*, PRC **16**, 1357 (1977)

What do we know about Ar?

- n-Ar total cross section form energies < 50 MeV
 Winters et al., PRC 43, 492 (1991)
- 40 Ar(ν_e , e) cross section from the mirror 40 Ti \rightarrow 40 Sc decay Bhattacharya et al., PRC **58**, 3677 (1998)
- Gammov-Teller strength distrib. for 40 Ar \rightarrow 40 K from $0^{\circ}(p, n)$ Bhattacharya *et al.*, PRC **80**, 055501 (2009)
- 40Ar(n, p)40Cl cross section between 9 and 15 MeV
 Bhattacharya et al., PRC 86, 041602(R) (2012)

Spectral function of ⁴⁰Ca

Approximated SF of ⁴⁰Ar

Experiment E12-14-012 at JLab

"We propose a measurement of the coincidence (e,e'p) cross section on argon. This data will provide the experimental input indispensable to construct the argon spectral function, thus paving the way for a reliable estimate of the neutrino cross sections."

Benhar *et al.*, arXiv:1406.4080

Experiment E12-14-012 at JLab

Primary goal: extraction of the proton shell structure of 40 Ar from (e,e'p) scattering

- spectroscopic factors,
- energy distributions,
- momentum distributions.

Secondary goal: improved description of final-state interactions in the argon nucleus.

Physics motivation

Expected sensitivity of DUNE to CP violation as a function of exposure for a v_e signal normalization uncertainties between 5% + 1% and 5% + 3%.

Physics motivation

Appearance probability as a function of neutrino energy

86

Relevance for DUNE

Neutrino oscillations

Reduction of systematic uncertainties from nuclear effects, especially for the 2nd oscillation maximum.

Proton decay

Probed lifetime affected by the partial depletion of the shell-model states.

Supernova neutrinos

Information on the valence shells essential for accurate simulations and detector design.

Impulse approximation

$$\frac{d^6 \sigma_{\rm IA}}{d\Omega_{k'} dE_{k'} d\Omega_{p'} dE_{p'}} \propto \sigma_{ep} \, S(\mathbf{p}, E) \, T_A(E_{p'})$$

 σ_{ep} elementary cross section

 $S(\mathbf{p}, E)$ spectral function

 $T_A(E_{p'})$ nuclear transparency

(Anti)parallel kinematics, p' | q

Energy conservation

$$E_{\mathbf{k}} + M_A = E_{\mathbf{k'}} + E_{\mathbf{p'}} + \sqrt{(M_A - M + E)^2 + \mathbf{p}_{\text{rec}}^2}$$

Momentum conservation

$$\mathbf{q} = \mathbf{p'} + \mathbf{p}_{\mathrm{rec}}
ightarrow |\mathbf{q}| = |\mathbf{p'}| + |\mathbf{p}_{\mathrm{rec}}|$$

$$\mathbf{q} = \mathbf{p}' + \mathbf{p}_{\mathrm{rec}}
ightarrow |\mathbf{q}| = |\mathbf{p}'| - |\mathbf{p}_{\mathrm{rec}}|$$

Impulse Approximation, $|p_{rec}| = |p|$

Neutron spectral function of ⁴⁰Ar

Kinematic settings

	E_e	$E_{e'}$	θ_e	P_p	θ_p	$ \mathbf{q} $	p_m	Ar	Ti
	MeV	MeV	\deg	MeV/c	\deg	MeV/c	MeV/c	events	events
kin1	2222	1799	21.5	915	-50.0	857.5	57.7	44M	13M
kin2	2222	1716	20.0	1030	-44.0	846.1	183.9	63M	21M
kin3	2222	1799	17.5	915	-47.0	740.9	174.1	73M	28M
kin4	2222	1799	15.5	915	-44.5	658.5	229.7	159M	113M
kin5	2222	1716	15.5	1030	-39.0	730.3	299.7	45M	61k
(e, e')	2222		15.5					3M	3M

Data collected Feb - Mar 2017

Expected energy distributions

Momentum distributions

Summary

- An accurate description of nuclear effects, including finalstate interactions, is crucial for an accurate reconstruction of neutrino energy.
- Theoretical models **must be validated** against (*e,e'*) data to estimate their uncertainties.
- The spectral function formalism can be used in Monte Carlo simulations to improve the accuracy of description of nuclear effects.
- **JLab experiment** will provide an input to estimate the spectral function of argon, essential for the next generation of neutrino-oscillation experiments.

Backup slides

Vagnoni et al., PRL 118, 142502 (2017)

Short-range correlations

Acciari et al. (ArgoNeuT), PRD 90, 012008 (2014)

Not SRC, simple π reabsorption: Weinstein *et al.*, PRC 94, 045501 (2016)

Nuclear transparency

Short-range correlations

Benhar et al., PRC 44, 2328 (1991)

Why the beam energy ~2 GeV?

	E_e	$E_{e'}$	θ_e	P_p	θ_p	$ \mathbf{q} $	p_m
	MeV	MeV	deg	MeV/c	deg	MeV/c	MeV/c
A	2200	1777	23.01	915	-50.9	895	20
В	2200	1777	21.66	915	-50.1	855	60
\mathbf{C}	2200	1777	20.29	915	-49.1	815	100
D	2200	1777	18.90	915	-48.0	775	140
\mathbf{E}	2200	1777	17.49	915	-46.6	735	180
F	2200	1777	16.03	915	-44.9	695	220
\mathbf{G}	2200	1777	14.53	915	-42.9	655	260
Η	2200	1777	12.96	915	-40.4	615	300
Ι	2200	1777	11.30	915	-37.3	575	340
J	2200	1777	27.64	915	-52.8	1035	-120

Why the beam energy ~2 GeV?

	E_e	$E_{e'}$	θ_e	P_p	θ_p	$ \mathbf{q} $	p_m
	MeV	MeV	\deg	MeV/c	\deg	MeV/c	MeV/c
A	4400	3977	10.82	915	-56.5	895	20
В	4400	3977	10.19	915	-55.4	855	60
\mathbf{C}	4400	3977	9.55	915	-54.1	815	100
D	4400	3977	8.90	915	-52.6	775	140
\mathbf{E}	4400	3977	8.24	915	-50.8	735	180
F	4400	3977	7.56	915	-48.8	695	220
G	4400	3977	6.85	915	-46.4	655	260
Η	4400	3977	6.12	915	-43.6	615	300
Ι	4400	3977	5.34	915	-40.1	575	340
J	4400	3977	12.97	915	-59.6	1035	-120

Coincidence electron scattering

Energy conservation

$$E_{\mathbf{k}} + M_A = E_{\mathbf{k'}} + E_{\mathbf{p'}} + \sqrt{(M_A - M + E)^2 + \mathbf{p}_{rec}^2}$$

Momentum conservation

$$\mathbf{k} = \mathbf{k}' + \mathbf{p}' + \mathbf{p}_{\rm rec}$$

(Anti)parallel kinematics, p' q

Energy conservation

$$E_{\mathbf{k}} + M_A = E_{\mathbf{k'}} + E_{\mathbf{p'}} + \sqrt{(M_A - M + E)^2 + \mathbf{p}_{\text{rec}}^2}$$

Momentum conservation

$$\mathbf{q} = \mathbf{p'} + \mathbf{p}_{\mathrm{rec}}
ightarrow |\mathbf{q}| = |\mathbf{p'}| + |\mathbf{p}_{\mathrm{rec}}|$$

$$\mathbf{q} = \mathbf{p}' + \mathbf{p}_{\mathrm{rec}}
ightarrow |\mathbf{q}| = |\mathbf{p}'| - |\mathbf{p}_{\mathrm{rec}}|$$

Optimizations

Momentum distributions

Expected energy distributions

Hall A

Argon cell

